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We investigate the behavior of the largest root < —1 of an Euler-Frobenius
polynomial. This root determines the convergence/divergence of a cardinal
Lagrange spline series. Asymptotic representations are obtained in the most impor-
tant cases. 7 1985 Academic Press, Inc.

Recently [4], we investigated the convergence of interpolating cardinal
Lagrange spline series
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where /, denotes the Lagrange spline of degree me N with respect to the
integer grid and node j. If m is odd, m=2r+ 1, then we have convergen-
ce/divergence if
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where z"(0)< —1 denotes the main root of the Euler (-Frobenius)
polynomial
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for the parameter value 1= 0.
It is well known [2] that the roots z!"(1) of H (1, z), t€ [0, 1], are sim-
ple and located on the negative axis, say,
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where

ZHEN(0) < —1 <z 1(0),

Generally we call the greatest root of H,(z, z) which does not exceed —1
the main root of H,,(¢, z), and we denote it by (,,(¢) (for 1€ [0, 1], reN).
Hence we have

{m(0)=27(0) if m=2r+1,reN,

(a3 =27(3) if m=2r,reN.
If we follow the lines of the proof for (1) in [4] then we obtain in case of a
shifted interpolation grid A+ Z, 4 € [0, 1], a condition similar to (1), where
the right-hand side is to be replaced by

min{[C,, ()], [{,(1—4)] } (3)

(cf. also [5]).

As indicated in [3], each root z}"(z) is a monotonously decreasing
function for 0<r< 1. This, together with H, (1,z)=z"H, (1 -tz '),
cf. [2], implies

min{ |, 1Lu(1 = 2]} < 1E0)] for m=2r + 1,
<IL, (Bl for m=2r,

Hence the greatest possible radius of convergence is obtained for A=0if m
is odd and for A=1 if m is even. For this reason we study the asymptotic
behavior of {,,, (0) and {,,(3), respectively.

In case of m=2r+1 we get ready information by a result of
Sobolev [6]. If we define the Euler polynomials E,, , by

d\" =
:Eml(z)=(1z>'"“( )————

=) =2y
for me N, then we have obviously
zE,, _(z)=H,(0, z).
Hence [6, Theorem 2] yields
Lo 1(0)= —expn[tan 4(r”+ 1)+0<n')} (4)
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as r — o, where the constant O <#n <1 has to be chosen such that

I3

1
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s and m=2r, reN. By a

We are going to treat the case where 4=
representation formula due to ter Morsche [2] we obtain (generally)

) ) | ) (/ m |
Hm(/”s M()\):(] +()\,)”H (/“+T 1 X
| dax, +¢ (6)
:(1+()\')n1+]() /,,\(D (/ Y)

s

(I i L)/V\
—] — 7
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By (6), H,(3, —e") vanishes if and only if

where

D, (4 X)

L (_{ m ;
(pm(l’ X ) B <d\'> COSh(x/z) (8)

vanishes. Now, let x =nz. Then

ouitmn=(L) (4
mi2s )= hid (d[ COSh(TE[/Z).

Let us modify Sobolev’s ideas as follows:

By the use of the partial fraction expansion of n/cos(nx/2), cf.
[1, p. 2327, e.g., we obtain

“d
7, () =

2 + 2 2 )
) e x| I

it—2n+1+2nfl
or

l n 1 Y] . ( 7 l )”
En‘*’(D,,I(z,m):m!i Y

Lo i =2n4 1yt Y
where it suffices again to make use of the members for n=0, 1 in the sum.
The result is that

, 1 ) 2(j— 1 '
__;zr,<§>:expn[tan U= o)
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holds for j=1,..,2r as r— oo with the same constant » as in (5).
Equations (4) and (9) together yield the

THEOREM. For the main roots of the Euler-Frobenius polynomials
H,, (0, 2) and H, (L, 2). respectively, the asymptotic relations

O A S L ST }
*r\2) 7 4r + 4 Y
7’ 1
Vv‘* = —<1 el
s (0] { +4r+2+0<r“>}

hold as r tends to .

Final Remark. From Sobolev [6, Theorem 1] it follows, in addition,
that

GO)<G0) < < 1
holds. Hence, for odd m > 1, the cubic splines provide for the greatest

possible radius of convergence.
Note that

s

1
, (§> — 3 /8= 582847, .

((0)= —2— /3= —3.73205...

. (1) 6+/3(7—/19)
54 5 =

— 276746...
6—/3(7— J/19)
24V 15+./105

(o)=Y VI g

2154105

Generally we can interpolate data y,, je Z, by a cardinal Lagrange spline
series of arbitrary high degree m only if they are growing for j— +x
slower than by any exponential rate.
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