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We investigate the behavior of the largest root :S --1 of an Euler Frobenius
polynomial. This root determines the convergence/divergence of a cardinal
Lagrange spline series. Asymptotic representations are obtained in the most impor-
tant cases. '1985 Academic Press. Inc

Recently [4], we investigated the convergence of interpolating cardinal
Lagrange spline series

I yJJx),
ie tf

X E IR, Y, E IR, for jE 2,

where II denotes the Lagrange spline of degree mEN with respect to the
integer grid and node j. If m is odd, m = 2r + 1, then we have convergen­
ce/divergence if

- i lill:':'i <lim \! Iyii 1.::~1II1(0)1
iii ~ J (> )

(1 )

where .::~m)(o) < -I denotes the mam root of the Euler (-Frobenius)
polynomial

( ~)III 1
Hm(t,.::)=(I-.::)mt I t+.::~.:: 1-.:: (2)

for the parameter value t = O.
It is well known [2] that the roots .::)'" I( t) of H",(t, '::), t E [0, I], are sim­

ple and located on the negative axis, say,

-x ~.::\"')(t)<.::j"')(t)< ... <.::~::')~O
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where
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Generally we call the greatest root of H m(t, z) which does not exceed - 1
the main root of Hm(t, z), and we denote it by (m( t) (for t E [0, 1], I' EN).

Hence we have

if m = 21' + 1, I' EN,

if m = 21', I' EN.

If we follow the lines of the proof for (1) in [4] then we obtain in case of a
shifted interpolation grid )" + Z, AE [0, ~], a condition similar to (1 ), where
the right-hand side is to be replaced by

(3 )

(cf. also [5]).
As indicated in [3], each root zj"(t) is a monotonously decreasing

function for 0 ~ t ~ 1. This, together with Hm(t, z) = zm Hm( 1 - t, z 1),
cf. [2], implies

min{ l(m(A)I, l(m(1 - nl} ~ ICn(O)1 for m = 21' + 1,

~ ICnWI for m = 21'.

Hence the greatest possible radius of convergence is obtained for A= 0 if m
is odd and for A= ~ if m is even. For this reason we study the asymptotic
behavior of (2r+ ,(0) and (2rW, respectively.

In case of m = 21' + 1 we get ready information by a result of
Sobolev [6]. If we define the Euler polynomials Em 1 by

for mEN, then we have obviously

Hence [6, Theorem 2] yields

(2r+ ,(0) = -exp n ltan 4(1': 1) + O(r()1 (4 )
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as r ->~, where the constant 0 < I] < I has to be chosen such that

, I
"\' = 0(1]')

,,'''"'2 (2n_I)2,.2 . (5)

We are going to treat the case where ;. = ~ and rn = 2r, r EN. By a
representation formula due to ter Morsche [2J we obtain (generally)

.' d)'" I
H",(i, -1")=(1 +e')'" + 1 (;.+- -­

dx, I +e'

= (I + 1")'" + Ie ;'C/J",U, x)

where

(
I

)
", /'. ( (

C/J",(J.,x)= - --.
dx 1+1"

By (6), H",(~, - 1") vanishes if and only if

1 • (. d)'" I
C/Jllh,·\)= dx cosh(x/2)

vanishes. Now, let x = 711. Then

(6)

(7)

(8)

Let us modify Sobolev's ideas as follows:
By the use of the partial fraction expansIOn of n/cos( nx/2), cr.

[I, p. 232 J, e.g., we obtain

or

~ 71'" + I C/J (~ 711) = In' i'"
2 '" 2' .

L
2 2

J
}(-1)/1 +__

il- 2n + I 2n - 1

(-1)"

(it - 2n + 1)'1/ + 1 '

where it suffices again to make use of the members for n = 0, 1 in the sum.
The result is that

,(1) L 2(j-rl+ln ~
::(J) - = -exp 71 tan' - + O(ln ...

I 2 2r + I 2
(9)
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holds for j = I, ... , 2r as r -+ 00 with the same constant ') as In (5).
Equations (4) and (9) together yield the

THEOREM. For the main roots oj' the Euler- Frohenius polynomials
H 2r " 1(0,.:;) and H2r(~, .:;), respectively, the asymptotic relations

(2'"1(0)= -{I+ n22+0(~)}
4r + r-

hold as r tends to x.

Final Remark. From Sobolev [6, Theorem 1] it follows, In addition,
that

holds. Hence, for odd m> I, the cubic splines provide for the greatest
possible radius of convergence.

Note that

y (I) In~2 2: = -3 - vi 8 = -5.82847 ,

(,(0)= -2-)3= -3.73205 ,

y (1)_ 6+J3(7-j19)
S4 2: - - / r;-;) = -2.76746...,

6-v 3(7- v I9)

v 2+/15+vl I05
~5(0) = / = -2.32247....

2- v I5+JlO5

Generally we can interpolate data YI' j E 7L, by a cardinal Lagrange spline
series of arbitrary high degree m only if they are growing for j -+ ±,x
slower than by any exponential rate.
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