The Main Roots of the Euler-Frobenius Polynomials

M. Reimer
Lehrstuhl Mathematik III. Universität Dortmund, Postfach 500500, D-4600 Dortmund 50, West Germany
Communicated by G. Meinardus
Received July 18, 1984

We investigate the behavior of the largest root $\leqslant-1$ of an Euler Frobenius polynomial. This root determines the convergence/divergence of a cardinal Lagrange spline series. Asymptotic representations are obtained in the most important cases. 11985 Academic Press. Inc.

Recently [4], we investigated the convergence of interpolating cardinal Lagrange spline series

$$
\sum_{i \in \mathbb{Z}} y_{j} l_{j}(x), \quad x \in \mathbb{R}, y_{j} \in \mathbb{R}, \quad \text { for } \quad j \in \mathbb{Z}
$$

where l_{j} denotes the Lagrange spline of degree $m \in \mathbb{N}$ with respect to the integer grid and node j. If m is odd, $m=2 r+1$, then we have convergence/divergence if

$$
\begin{equation*}
\left.\varlimsup_{i j \mid \rightarrow=} \sqrt[|j|]{\left|y_{j}\right|} \ll\right|_{(>r} ^{(m)}(0) \mid \tag{1}
\end{equation*}
$$

where $z_{r}^{(m)}(0)<-1$ denotes the main root of the Euler (-Frobenius) polynomial

$$
\begin{equation*}
H_{m}(t, z)=(1-z)^{m+1}\left(t+z \frac{\hat{\partial}}{\hat{\partial} z}\right)^{m} \frac{1}{1-z} \tag{2}
\end{equation*}
$$

for the parameter value $t=0$.
It is well known [2] that the roots $z_{j}^{(m)}(t)$ of $H_{m}(t, z), t \in[0,1]$, are simple and located on the negative axis, say,

$$
\begin{gathered}
-x \leqslant z_{1}^{(m)}(t)<z_{2}^{(m)}(t)<\cdots<z_{m}^{(m)} \leqslant 0 \\
358
\end{gathered}
$$

where

$$
\begin{gathered}
z_{r}^{(2 r+1)}(0)<-1<z_{r+1}^{(2 r+1)}(0) . \\
z_{r}^{(2 r)}\left(\frac{1}{2}\right)<-1<z_{r+1}^{(2 r)}\left(\frac{1}{2}\right) .
\end{gathered}
$$

Generally we call the greatest root of $H_{m}(t, z)$ which does not exceed -1 the main root of $H_{m}(t, z)$, and we denote it by $\zeta_{m}(t)$ (for $t \in[0,1], r \in \mathbb{N}$).

Hence we have

$$
\begin{array}{lll}
\zeta_{m}(0)=z_{r}^{m}(0) & \text { if } & m=2 r+1, r \in \mathbb{N}, \\
\zeta_{m}\left(\frac{1}{2}\right)=z_{r}^{m}\left(\frac{1}{2}\right) & \text { if } & m=2 r, r \in \mathbb{N} .
\end{array}
$$

If we follow the lines of the proof for (1) in [4] then we obtain in case of a shifted interpolation grid $\lambda+\mathbb{Z}, \lambda \in\left[0, \frac{1}{2}\right]$, a condition similar to (1), where the right-hand side is to be replaced by

$$
\begin{equation*}
\min \left\{\left|\zeta_{m}(\lambda)\right|,\left|\zeta_{m}(1-\lambda)\right|\right\} \tag{3}
\end{equation*}
$$

(cf. also [5]).
As indicated in [3], each root $z_{j}^{m}(t)$ is a monotonously decreasing function for $0 \leqslant t \leqslant 1$. This, together with $H_{m}(t, z)=z^{m} H_{m}\left(1-t, z^{1}\right)$, cf. [2], implies

$$
\begin{aligned}
\min \left\{\left|\zeta_{m}(\lambda)\right|,\left|\zeta_{m}(1-\lambda)\right|\right\} & \leqslant\left|\zeta_{m}(0)\right| \text { for } m=2 r+1 \\
& \leqslant\left|\zeta_{m}\left(\frac{1}{2}\right)\right| \text { for } m=2 r .
\end{aligned}
$$

Hence the greatest possible radius of convergence is obtained for $\lambda=0$ if m is odd and for $\lambda=\frac{1}{2}$ if m is even. For this reason we study the asymptotic behavior of $\zeta_{2 r+1}(0)$ and $\zeta_{2 r}\left(\frac{1}{2}\right)$, respectively.

In case of $m=2 r+1$ we get ready information by a result of Sobolev [6]. If we define the Euler polynomials E_{m-1} by

$$
z E_{m-1}(z)=(1-z)^{m+1}\left(z \frac{d}{d z}\right)^{m} \frac{z}{(1-z)^{2}}
$$

for $m \in \mathbb{N}$, then we have obviously

$$
z E_{m-1}(z)=H_{m}(0, z)
$$

Hence [6, Theorem 2] yields

$$
\begin{equation*}
\zeta_{2 r+1}(0)=-\exp \pi\left[\tan \frac{\pi}{4(r+1)}+O\left(\eta^{\prime}\right)\right] \tag{4}
\end{equation*}
$$

as $r \rightarrow \infty$, where the constant $0<\eta<1$ has to be chosen such that

$$
\begin{equation*}
\sum_{n=2}^{n} \frac{1}{(2 n-1)^{2 r+2}}=O\left(\eta^{r}\right) \tag{5}
\end{equation*}
$$

We are going to treat the case where $i=\frac{1}{2}$ and $m=2 r, r \in \mathbb{N}$. By a representation formula due to ter Morsche [2] we obtain (generally)

$$
\begin{align*}
H_{m}\left(\lambda,-e^{v}\right) & =\left(1+e^{x}\right)^{m+1}\left(\lambda+\frac{d}{d x}\right)^{m} \frac{1}{1+e^{x}} \tag{6}\\
& =\left(1+e^{x}\right)^{m+1} e^{\prime} \quad \dot{x} \Phi_{m}(\lambda, x)
\end{align*}
$$

where

$$
\begin{equation*}
\Phi_{m}(\lambda, x)=\left(\frac{d}{d x}\right)^{m} \frac{e^{j x}}{1+e^{x}} \tag{7}
\end{equation*}
$$

By (6), $H_{m}\left(\frac{1}{2},-e^{r}\right)$ vanishes if and only if

$$
\begin{equation*}
\Phi_{m}\left(\frac{1}{2}, x\right)=\left(\frac{d}{d x}\right)^{m} \frac{1}{\cosh (x / 2)} \tag{8}
\end{equation*}
$$

vanishes. Now, let $x=\pi t$. Then

$$
\Phi_{m}\left(\frac{1}{2}, \pi t\right)=\left(\frac{1}{\pi}\right)^{m+1}\left(\frac{d}{d t}\right)^{m} \frac{\pi}{\cosh (\pi t / 2)}
$$

Let us modify Sobolev's ideas as follows:
By the use of the partial fraction expansion of $\pi / \cos (\pi x / 2)$, cf. [1, p. 232], e.g., we obtain

$$
\pi^{m+1} \Phi_{m}\left(\frac{1}{2}, \pi t\right)=\left(\frac{d}{d t}\right)^{m}\left\{\pi+\sum_{n=}^{+*}(-1)^{n}\left[\frac{2}{i t-2 n+1}+\frac{2}{2 n-1}\right]\right\}
$$

or

$$
\frac{1}{2} \pi^{m+1} \Phi_{m}\left(\frac{1}{2}, \pi t\right)=m!i^{m} \sum_{n=}^{\prime} \frac{(-1)^{n}}{(i t-2 n+1)^{m+1}}
$$

where it suffices again to make use of the members for $n=0,1$ in the sum. The result is that

$$
\begin{equation*}
=(2 r)\left(\frac{1}{2}\right)=-\exp \pi\left[\tan \frac{2(j-r)+1}{2 r+1} \frac{\pi}{2}+O\left(\eta^{r}\right)\right] \tag{9}
\end{equation*}
$$

holds for $j=1, \ldots, 2 r$ as $r \rightarrow \infty$ with the same constant η as in (5). Equations (4) and (9) together yield the

Theorem. For the main roots of the Euler-Frobenius polynomials $H_{2 r+1}(0, z)$ and $H_{2 r}\left(\frac{1}{2}, z\right)$, respectively, the asymptotic relations

$$
\begin{aligned}
& \zeta_{2 r}\left(\frac{1}{2}\right)=-\left\{1+\frac{\pi^{2}}{4 r+4}+O\left(\frac{1}{r^{2}}\right)\right\}, \\
& \zeta_{2 r+1}(0)=-\left\{1+\frac{\pi^{2}}{4 r+2}+O\left(\frac{1}{r^{2}}\right)\right\}
\end{aligned}
$$

hold as r tends to x.
Final Remark. From Sobolev [6, Theorem 1] it follows, in addition, that

$$
\zeta_{3}(0)<\zeta_{5}(0)<\cdots<-1
$$

holds. Hence, for odd $m>1$, the cubic splines provide for the greatest possible radius of convergence.

Note that

$$
\begin{aligned}
\zeta_{2}\left(\frac{1}{2}\right) & =-3-\sqrt{8}=-5.82847 \ldots \\
\zeta_{3}(0) & =-2-\sqrt{3}=-3.73205 \ldots \\
\zeta_{4}\left(\frac{1}{2}\right) & =-\frac{6+\sqrt{3(7-\sqrt{19})}}{6-\sqrt{3(7-\sqrt{19})}}=-2.76746 \ldots \\
\zeta_{5}(0) & =\frac{2+\sqrt{15+\sqrt{105}}}{2-\sqrt{15+\sqrt{105}}}=-2.32247 \ldots
\end{aligned}
$$

Generally we can interpolate data $y_{j}, j \in \mathbb{Z}$, by a cardinal Lagrange spline series of arbitrary high degree m only if they are growing for $j \rightarrow \pm \infty$ slower than by any exponential rate.

Acknowledgments

The author is indebted to the referee for a valuable hint.

References

1. H. Behnke and F. Sommer, "Theorie der analytischen Funktionen einer komplexen Veränderlichen," Springer-Verlag, Berlin/Göttingen/Heidelberg, 1955.
2. H. ter Morsche, On the existence and convergence of interpolating periodic spline functions, in "Spline-Funktionen" (K. Böhmer, G. Meinardus, and W. Schempp, Eds.). pp. 177-195, Bibliographisches Institut, Mannheim, 1974.
3. M. Reimer, Extremal spline bases, J. Approx. Theory 36 (1982), 91-98.
4. M. Reimer. The radius of convergence of a cardinal Lagrange spline series of odd degree, J. Approx. Theory 39 (1983), 289-294.
5. D. Siepmann, Kardinale Spline-Interpolation bezüglich äquidistant verteilter Knoten, Dissertation, Dortmund. 1984.
6. S. L. Sobolev. On the roots of Euler polynomials, Dokl. Akad. Nauk SSSR 235 (1977). [Soriet Math. Dokl. 18 (1977), 935-938].
